Improved Face Detection Using Spatial Histogram Features

نویسندگان

  • Hamid Parvin
  • Hosein Alizadeh
  • Mahmood Fathy
  • Behrouz Minaei-Bidgoli
چکیده

In this paper, we improve an object detection approach using spatial histogram features, by applying classifier ensemble. The spatial histogram features can preserve texture and shape information of an object, simultaneously. We train a hierarchical classifier by combining cascade histogram matching and the combination of Multi Layer Perceptrons. The cascade histogram matching is trained via automatically selected discriminative features. A forward sequential selection method is presented to construct uncorrelated and discriminative feature sets for combination of MLPs and RBFs. We evaluate the proposed approach on face objects. Experimental results show that the proposed approach is efficient and robust in object detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Histogram Equalization in Face Detection Using Spatial Histogram Features

Many information of an object can simultaneously be conserved by histogram based features. Because of the different intensities of pixels and different lighting conditions in an image, histograms which are employed for extracting features are better to be first equalized. In this paper, the effect of equalization over the histograms used for feature extraction is studied. Experimental results o...

متن کامل

Spatial Histogram Features for Face Detection in Color Images

This paper presents a novel face detection approach in color images. We employ spatial histograms as robust features for face detection. The spatial histograms consist of marginal distribution of color image information. Facial texture and shape are preserved by the spatial histogram representation. A hierarchical classifier combining histogram matching and support vector machine is utilized to...

متن کامل

An Improved Fast Video Clip Search Algorithm for Copy Detection using Histogram-based Features

In this paper, we present an improved fast and robust search algorithm for copy detection using histogram-based features for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human fa...

متن کامل

An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains

In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BV...

متن کامل

Boosted Gaussian Classifier with Integral Histogram for Face Detection

Novel features and weak classifiers are proposed for face detection within the AdaBoost learning framework. Features are histograms computed from a set of spatial templates in filtered images. The filter banks consist of Intensity, Laplacian of Gaussian (Difference of Gaussians), and Gabor filters, aiming at capturing spatial and frequency properties of faces at different scales and orientation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008